Die Methode beschreibt die Bestimmung der Viskosität in Laborwürze mittels eines Kugelfall-Viskosimeters verschiedener Bauarten.
Geeignet für alle Würzen und Maischen.
Es wird hierbei die Fallzeit einer bestimmten Kugel beim Herabsinken durch ein mit Versuchsflüssigkeit gefülltes Glasrohr zwischen zwei Strichmarken ermittelt. Die Präzision dieser Methode wird erhöht, wenn die Fallzeit statt manuell mit einer Stoppuhr elektrisch über Lichtschranken auf 0,01 s genau erfasst wird.
Nicht das β‑Glucan selber, sondern seine gelierte Form können zu Filtrationsschwierigkeiten führen. Dieses Gel entsteht bei Scherkräften und höheren Temperaturen über die Zeit.
Würze, Bier
β-Glucan-Gel kann nachweislich zur massiven Herabsetzung der Filtrierbarkeit von Bier führen. Die Ausbildung einer Gelstruktur hängt im Wesentlichen von der Konzentration an β-Glucan, Temperatur, Zeit und von auftretenden Scher- und Dehnbelastungen während der Würze- und Bierbereitung ab. Die Gelstruktur kann thermisch wieder in den Sollzustand zurückgeführt werden.
Bestimmung der Konzentration an gelöstem Kohlendioxid in karbonisierten Getränken in Flaschen und Dosen
Nach kräftigem Schütteln wird der Gesamtgasdruck des Bieres gemessen. Das Kohlendioxid wird anschließend in Kalilauge gebunden. Aus dem zurückbleibenden Gasvolumen ergibt sich der „Luftgehalt“. Nach Korrektur des Gesamtdruckes um den gefundenen „Luftgehalt“ wird aus diesem der Kohlendioxidgehalt berechnet [1].
Bestimmung der Konzentration an gelöstem Sauerstoff durch elektrochemische Sauerstoffsensoren mit freiliegenden Elektroden
Das Messverfahren mit dem Digox-Analysator arbeitet nach dem potentiostatischen 3-Elektroden-Messsystem von Tödt und Teske ohne Membran.
Dabei bestehen die Messelektrode aus massivem Silber, die Gegenelektrode aus Edelstahl und die Bezugselektrode aus Silber/Silberchlorid.
Nach Anlegen einer definierten „Polarisationsspannung", läuft an der Messelektrode eine elektrochemische Reaktion ab. Die Sauerstoffmoleküle werden reduziert.
Messelektrode (Silber):
O2 + 2 H2O + 4 e− → 4 OH− (kathodischer Vorgang)
Gegenelektrode (VA):
4 OH− → O2 + 2 H2O + 4 e− (anodischer Vorgang)
Der bei dieser Reaktion fließende Strom ist direkt proportional zur Menge an gelöstem Sauerstoff, wenn die Polarisationsspannung möglichst exakt auf dem Niveau des Diffusionsgrenzstromes fixiert ist.
In diesem Fall stellt sich der Zusammenhang wie folgt dar:
I |
= |
Messstrom |
|
= |
Sauerstoffkonzentration |
F |
= |
Faraday-Konstante (96 485,309 C/mol) |
n |
= |
Anzahl der pro Molekül umgesetzten Elektronen |
A |
= |
Kathodenoberfläche |
d |
= |
Dicke der „ungerührten Grenzschicht“ |
Die Dicke der ungerührten Grenzschicht wird von den hydrodynamischen Verhältnissen an der Messelektrode bestimmt, der Transport der Sauerstoffmoleküle durch die Grenzschicht von temperaturabhängigen Diffusionsvorgängen. Diese beiden klar definierten Einflussfaktoren werden exakt gemessen und kompensiert.
Um die Polarisationsspannung zwischen beiden Elektroden definiert justieren zu können, wird bei Digox Messgeräten eine dritte Elektrode, die Vergleichselektrode, eingesetzt. Diese Vergleichselektrode steht über ein Diaphragma mit der Oberfläche der Messelektroden in elektrolytischem Kontakt, ohne dass ein Stoffaustausch stattfinden kann [1, 2].
Eine Inline-Kalibrierung ist integriert. Unter Ausnutzung des Faradayschen Gesetzes wird durch Elektrolyse des Wassers eine exakt definierte Menge Sauerstoff erzeugt.
I |
= |
Elektrolysestrom |
t |
= |
Zeit |
m |
= |
Masse, [g/mol] |
F |
= |
Faraday-Konstante (96 485,309 C/mol) |
Der Sauerstoff löst sich im durchströmenden Messgut und wird an der Messzelle nachgewiesen. Der bei der Elektrolyse ebenfalls entstehende Wasserstoff ist für die Messung ohne Belang. Die Kontrolle der Kalibrierwerte sowie eine ggf. erforderliche Korrektur werden über einen Mikroprozessor vorgenommen. Die Elektrolyse ermöglicht eine Kalibrierung des Gerätes im Messgut unter Messbedingungen. Der Messbetrieb wird durch die Kalibrierung nicht unterbrochen.
Bestimmung des Gesamtgehaltes an Sauerstoff (gelöster und im Kopfraum) in abgefüllten Gebinden
Durch Schütteln des auf 20 °C gebrachten Flaschen- oder Dosenbieres wird der Sauerstoff zwischen Bier und Kopfraum in das Gleichgewicht gebracht (Henry-Dalton-Gesetz). Aus der anschließenden direkten Messung des Sauerstoffs im Bier oder im Kopfraum lässt sich der Gesamtsauerstoff unter Verwendung eines Tabellenwertes, welcher das Kopfraumvolumen (in % des Füllvolumens) berücksichtigt, berechnen.
Bestimmung der Gesamtluft in Flaschen und Dosen
Bestimmung der Gesamtluft in Gebinden mit Bier, Biermischgetränken und karbonisierten Getränken
Die im Bier enthaltenen Gase werden durch Schütteln und Erwärmen in eine mit Kalilauge gefüllte Bürette überführt. Das Kohlendioxid wird durch die Kalilauge absorbiert, das verbleibende Restvolumen an Sauerstoff und Stickstoff gemessen [1].