The method describes how to determine the manganese content of water through oxidation to permanganate.
Manganese ions are catalytically oxidized into purple-colored permanganate ions. The purple color of the solution is determined using a comparator (or photometrically):
Mn2+ + 12 H2O → MnO4- + 8 H3O+ + 5 e-
The method describes how to determine the manganese content of water photometrically with a cuvette test.
Manganese(II) ions react in an ammonia solution with formaldoxime, forming a reddish-colored complex.
The cations in beer and wort are determined with this analysis.
This method is suitable for both wort and beer.
Inductively coupled plasma optical emission spectroscopy (ICP-OES) is a fast and reliable method for the laboratory analysis of metals. Inductively coupled plasma (ICP), a high frequency field of ionized gas, serves as a medium for atomizing and exciting the substances found in samples. Liquid, dissolved or aerosol samples are injected into the ionized gas stream. In emission spectroscopy, ICP can be used in conjunction with a number of optical and electronic systems either simultaneously or sequentially in multi-element spectrometers. In the plasma, the atoms and ions are excited to a higher energy state bringing about the emission of electromagnetic radiation (light), primarily in the ultraviolet and visible region of the spectrum. Metals ordinarily occur as ions in the temperature range typical for ICP of 6000 to 10000 K; however, non-metals and metalloids are only partially ionized.
ICP-OES operates within a very wide range. This usually encompasses six orders of magnitude in concentrations smaller than μg/l up to g/l, depending upon the element and the concentrations used for the set of analysis data. With ICP-OES, beer and wort can also be analyzed without prior processing of the samples, in contrast to AAS. Methods for determining the following in beer and wort will be described below: Al, B, Ba, Ca, Co, Cu, Fe, K, Mg, Mn, Mo, Na, P, Si, Sr, Sn and Zn.
The method describes how to determine the manganese content of water by atomic emission spectrometry.
Refer to W-000.17.210 Calcium in Water, Determination Using Atomic Emission Spectrometry (ICP-AES) (Principle)
Potassium permanganate oxidizes many organic and certain inorganic substances more or less completely in acidic, neutral or alkaline solutions. The volume of potassium permanganate required in the analysis is determined potentiometrically. Since oxidation depends on the type of solution, on its temperature and on the reaction time, the procedure described below must be followed precisely.
In acidic solutions, permanganate ions are typically reduced to manganese(II) ions:
MnO4- + 5 e- + 8 H3O+ → Mn2+ + 12 H2O
In alkaline solutions, the reduction results in tetravalent manganese only:
MnO4- + 3 e- + 4 H3O+ → MnO2 + 6 H2O
Since in both cases the titration takes place in an acidic solution, this is irrelevant for the calculation. By adding oxalic acid, both the excess permanganate ions as well as the tetravalent manganese are reduced to manganese(II) ions:
2 MnO4- + 5 C2O42- + 16 H3O+ → 2 Mn2+ + 24 H2O + 10 CO2
MnO2 + C2O42- + 4 H3O+ → Mn2+ + 6 H2O + 2 CO2
This method describes the determination of manganese in wort or Congress wort by means of atomic absorption spectrometry.
Suitable for analysis of all (laboratory) wort samples.
Manganese in wort is measured using the AAS technique by directly aspirating the diluted sample into an acetylene oxygen flame; the measurement is made at 279.5 nm.