The method describes how to determine the content of oxidizable organic substances in water using an oxidizing agent, potassium dichromate.
Potassium dichromate oxidizes many organic and certain inorganic substances to various extents in an acidic solution. Since the level of oxidation depends upon the kinds of substances, the concentration of potassium dichromate, the pH of the solution, and the temperature and reaction time, the procedure described below must be followed precisely. The volume of potassium dichromate required in the analysis is determined potentiometrically. In an acidic solution, the dichromate ions are reduced to chromium(III) ions:
Cr2O72- + 6 e- + 14 H3O+ → 2 Cr3+ + 21 H2O
Dichromate ions in excess of those required are determined through titration with an ammonium iron(II) sulfate solution:
Cr2O72- + 6 Fe2+ + 14 H3O+ →2 Cr3+ + 6 Fe3+ + 21 H2O
Potassium permanganate oxidizes many organic and certain inorganic substances more or less completely in acidic, neutral or alkaline solutions. The volume of potassium permanganate required in the analysis is determined potentiometrically. Since oxidation depends on the type of solution, on its temperature and on the reaction time, the procedure described below must be followed precisely.
In acidic solutions, permanganate ions are typically reduced to manganese(II) ions:
MnO4- + 5 e- + 8 H3O+ → Mn2+ + 12 H2O
In alkaline solutions, the reduction results in tetravalent manganese only:
MnO4- + 3 e- + 4 H3O+ → MnO2 + 6 H2O
Since in both cases the titration takes place in an acidic solution, this is irrelevant for the calculation. By adding oxalic acid, both the excess permanganate ions as well as the tetravalent manganese are reduced to manganese(II) ions:
2 MnO4- + 5 C2O42- + 16 H3O+ → 2 Mn2+ + 24 H2O + 10 CO2
MnO2 + C2O42- + 4 H3O+ → Mn2+ + 6 H2O + 2 CO2