Determination of the SGA20/20 submerged weight ratio of a liquid
Wort, beer, beer-based beverages, NAB, beverages, liquid
By precisely weighing the volume of a solution (wort or beer) against the same volume of a reference solution (water) at 20 °C, the relationship of the submerged weights (specific gravity), which are dependent on their buoyancy, is calculated through division and is expressed as SGA20/20 [1].
Spectrophotometric determination of the iodine value of brewery spent grain
Brewery spent grain, wet spent grain, dry spent grain
High molecular weight dextrins and starch present in the wort extracted from brewery spent grain are precipitated through the addition of ethanol, centrifuged and dissolved in phosphate buffer, followed by the addition of an iodine solution. Depending on the molecular weight and degree of branching, a red to blue color forms, the intensity of which is measured spectrophotometrically at 578 nm.
Determination of the amount of cold break material in the pitching wort
Cast-out wort, wort from the midpoint of chilling/pitching wort (without yeast)
The hot break material (trub) and any hop particles which may be present in the wort, must first be removed. After the wort has been cooled to 2 °C, it is filtered through a glass fiber filter. The residue remaining on the filter is dried and then weighed.
Cold break material or cold trub refers to all material that settles out in the process of chilling wort after separation of the hot trub or hot break material. Cold trub can be filtered out of the wort and primarily consists of proteins (48–57 %), tannins (11–26 %) and carbohydrates (20–36 %). The amount of cold break material in wort depends on the quality and composition of the raw materials, brewhouse equipment and wort handling. In academic and professional circles, opinions regarding the significance of cold break material for downstream processes and for the quality of the finished beer are strongly divided [1, 2, 5]. Under certain circumstances, the quantity of cold break material in wort may exceed 250 mg/l, especially where accelerated fermentation is practiced. Ultimately, this can detract from the flavor of the finished beer [3]. Breweries, where removal of the cold break material has been practiced successfully, determine the quantity of cold break in their pitching wort at regular intervals, in order to evaluate the efficacy of their separation equipment.
Hops and hop products intended for use in beer brewing or elsewhere in the food industry
After milling, hops and hop powder products are extracted using a diethyl ether/methanol mixture and a hydrochloric acid solution. The α-acids and β-acids dissolved in the ether phase are separated using reversed phase high-pressure liquid chromatography (RP-HPLC) and measured spectrophotometrically at a wavelength of 314 nm.
Hop extracts are dissolved in methanol. The α-acids and β-acids dissolved in the methanol are separated using reversed phase high pressure liquid chromatography (RP-HPLC) and measured spectrophotometrically at a wavelength of 314 nm.
Whole hops intended for use in beer brewing or elsewhere in the food industry
Evaluation of the appearance of hop cones is performed through visual and manual inspection.
This method describes how to determine the time required for filtration of laboratory mashes.
Malt intended for use in beer brewing or elsewhere in the food industry
The time from the beginning to the end of filtration is determined when producing a laboratory mash.