Determination of the total acidity through titration
This method is used to determine the total titratable acids in beverages and concentrates.
Titratable acidity represents the sum of the free acids present in a beverage, with the exception of the dissolved carbon dioxide (carbonic acid). In fruit juices and the beverages prepared from them, they usually consist of malic acid, citric acid and tartaric acid.
The titration of the degassed beverage sample (freed from carbonic acid) is carried out potentiometrically using 0.25 mol/l sodium hydroxide solution either to a pH of 7.0 calculated as tartaric acid or to a pH of 8.1 calculated as citric acid.
Determination of citric acid by enzymatic means
This analysis is suitable for malt, wort, beer, beer-based beverages and soft drinks
Fruit juices:
The acid spectrum typical of certain types of fruit are used, along with other criteria, as a basis for recognizing unadulterated fruit juices. Tartaric acid, citric acid and L-malic acid are recorded here, which, with a few exceptions, determine the total acidity of the fruit.
Citric acid occurs as the primary acid in citrus juices and other juices. Orange juice usually contains 3–17 g/l citric acid (AIJN).
In citrus juices, an addition of citric acid can be detected via the citric acid/D-isocitric acid ratio, as this lies within relatively narrow limits. In orange juice, values below 130 are found.
D-isocitric acid is partly present in fruit products as a lactone. The lactone must first be saponified prior to enzymatic determination in order to detect the total D-isocitric acid content.
Malt, wort and beer:
Citric acid is an organic acid and is present in malt and wort and is also produced during fermentation.
Citric acid (citrate) is converted to oxaloacetic acid and acetic acid catalyzed by the enzyme citrate lyase (CL):
Citrate oxaloacetic \(^{\underrightarrow{CL}}\) acid + acetate
In the presence of the enzymes malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), oxaloacetic acid and its decarboxylation product pyruvic acid are reduced to L-malic acid and L-lactic acid, respectively, by reduced nicotinamide adenine dinucleotide (NADH):
Oxaloacetate + NADH + H+ \(^{\underrightarrow{L-MDH}}\) L-malate + NAD+
Pyruvate + NADH + H+ \(^{\underrightarrow{L-LDH}}\)L-lactate + NAD+
The sum of the quantity of NADH consumed during the reaction is equivalent to the quantity of citric acid. The absorbance is determined photometrically at 334, 340 or 365 nm.
Determination of dissolved oxygen concentration by electrochemical oxygen sensors with exposed electrodes
The measurement process using a Digox Analyzer works according to the principle of the potentiostatic three-electrode measurement system developed by TÖDT and TESKE and does not require a membrane.
The measuring electrode consists of solid silver, while the counter electrode is made of stainless steel. The reference electrode is composed of silver/silver chloride.
After generating a defined “polarization voltage”, an electrochemical reaction occurs at the measuring electrode, inducing a reduction of the oxygen molecules in the sample.
Measuring electrode (silver):
O2 + 2 H2O + 4 e− → 4 OH− (cathodic process)
Counter electrode (stainless steel):
4 OH− → O2 + 2 H2O + 4 e− (anodic process)
The flow of current as a result of this reaction is directly proportional to the amount of dissolved oxygen in the sample, if the polarization voltage is fixed as close to the level of the diffusion threshold current as possible.
In this case, the relationship can be represented as follows:
I = K × CO2, whereupon K = n × F × A × 1/d
I = sensor current
CO2 = oxygen concentration
F = Faraday constant
n = number of electrons per molecule
A = cathode surface
d = thickness of the “undisturbed layer” along the wall
The thickness of the undisturbed layer along the wall is determined by the hydrodynamic relationships at the measurement electrode and the transportation of oxygen molecules across the boundary layer brought about by temperature-dependent diffusion processes. Both of these clearly defined factors are precisely measured and compensated.
In order to adjust the polarization voltage between the two electrodes, a third electrode, the reference electrode, is employed in Digox measurement devices. This reference electrode remains in contact with the surface of the measuring electrode over a diaphragm in order to prevent mass transfer [1, 2, 3].
Active calibration:
In-line calibration is integrated into the device and is initiated by pressing a button. Taking advantage of Faraday’s Law, an exactly defined amount of oxygen is produced through the electrolysis of water.
I × t = m × F
I = current required for electrolysis
t = time
m = mass, g/mol
F = Faraday constant
The oxygen dissolves in the medium as it flows through and is detected at the measuring cell. The hydrogen liberated during the electrolysis reaction is not relevant for the measurement. The microprocessor monitors the calibration values and carries out any necessary corrective measures. The electrolysis enables the calibration of the device to be carried out under the same conditions and in the same medium as the analysis. Measurement operations are not disrupted during the calibration process [3].
The following applies to Digox 6.1 and all later models: In order to precisely determine the necessary potential for the measurement system, the Digox Analyzer possesses a scanner, which records the product-specific behavior of the medium subject to analysis. This can establish, whether the medium – due to the additives or supplements – must be measured at another potential. In this way, all types of beer-based beverages, non-alcoholic beverages and wine can be analyzed. Moreover, oxygen-reducing substances which can cause the calibration to be inaccurate may also be detected using the calibration scanning process. The device automatically implements the necessary compensative measures with the factors it has determined.
Determination of caffeine and theobromine using HPLC
This method is suitable for beverages containing caffeine, tea-based beverages and NAB.
Caffeine and theobromine are separated using HPLC and reversed phases and determined by means of UV detection.
Determination of hydroxymethylfurfural using HPLC
Fruit juice, NAB, beverages
5-Hydroxymethylfurfural (HMF) is separated using HPLC and reversed phases. This substance is measured with a UV detector.
HPLC analysis specifically detects 5-hydroxymethylfurfural.
A photometric method, B-590.59.111 Hydroxymethylfurfural - photometrisch, using barbituric acid and o-toluidine detects all aldehydes present in the sample. This method serves as an alternative for laboratories without HPLC.
Analysis for determining the taurine content after derivatization using HPLC
This analysis is suitable for energy drinks and NAB.
Taurine is derivatized using dansyl chloride, separated using HPLC in reversed phases and determined with a fluorescence detector.