This method describes how to determine the tendency of a sample to exhibit gushing.
Malted and unmalted grain intended for use in beer brewing or elsewhere in the food industry
A sample is collected of the cereal to be tested and a hot water extraction is carried out. After cold break separation, the sample is carbonated and bottled. After shaking and then opening the bottle, the volume of liquid that fobs over and out of the bottle is measured. This value is used to determine the gushing potential for the malt or adjunct.
This method describes how to determine the gushing potential of a sample to be analyzed.
Malted and unmalted grain intended for use in beer brewing or elsewhere in the food industry
A cold water extract of a malt or adjunct (coarse grist) is concentrated through boiling; subsequently, standardized bottled water is added to the extract. The extract is filled in bottles. After the bottles have been shaken according to a defined procedure, they are opened and the weight of liquid fobbing out of the bottles as foam (gushing) is determined and taken as a measure of the gushing potential for the malt or adjunct in question.
Determination of the vicinal diketone content (diacetyl + 2,3-pentanedione) as well as the total diketone content in beer
The method is suitable for filtered beers brewed to any original wort or to any alcohol content as well as for fermenting wort.
Diacetyl (2,3-butanedione) and 2,3-pentanedione are detected photometrically in the beer after steam distillation. It is also possible to determine precursors in green beer.
Determination of maltose and maltotriose by enzymatic means
Suitable for wort, beer, malt beverages, nutrient beer, mixed beer beverages, NAB, juices and beverages.
Maltose is the main component of beer wort or wort extract.
Maltose and sucrose are cleaved by the enzyme α-glucosidase (maltase) at pH 6.6 into two molecules of D-glucose and D-fructose, respectively:
\(\text{Maltose}+H_2O \hspace{0.8em} \xrightarrow{α–glucosidase} \hspace{0.8em} {2 \hspace{0.2em} \text{D–glucose}}\)
\(\text{Sucrose}+H_2O \hspace{0.8em} \xrightarrow{α–glucosidase} \hspace{0.8em} {\text{D–glucose}+\text{D–fructose}}\)
The D-glucose formed is phosphorylated by the enzyme hexokinase (HK) and adenosine 5'-triphosphate (ATP) to glucose 6-phosphate (G-6-P):
\(\text{Glucose}+\text{ATP} \hspace{0.8em} \xrightarrow{HK} \hspace{0.8em} \text{G-6-P} \hspace{0.2em} + \hspace{0.2em} \text{ADP}\)
In the presence of the enzyme glucose-6-phosphate dehydrogenase (G6P-DH), G-6-P is oxidized from nicotinamide adenine dinucleotide phosphate (NADP) to gluconate-6-phosphate. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is formed:
\(\text{G-6-P} \hspace{0.2em} + \hspace{0.2em} \text{NADP}^+ \hspace{0.8em} \xrightarrow{G6P-DH} \hspace{0.8em} \text{gluconate-6-phosphate} \hspace{0.2em} + \hspace{0.2em} \text{NADP}^+ \hspace{0.2em} + \hspace{0.2em} \text{H}^+\)
The amount of NADPH formed during the reaction is equivalent to the amount of glucose. NADPH is measurand and is determined based on its absorbance at 334, 340 or 365 nm.
The enzyme α-glucosidase is group specific, i.e., the specificity is directed to the type of glycosidic bond.
Only α-1,4 bonds, i.e., in addition to maltose, sucrose and maltotriose, but not maltotetraose, are cleaved under the given conditions. Therefore, the sucrose content must be taken into account in the maltose calculation (the maltose approach records the glucose formed from maltose and sucrose and the free glucose, the sucrose approach records the glucose formed from sucrose and the free glucose).
Determination of organic acids using ion chromatography
This method is suitable for beer, wort, green beer, NAB, water and wastewater
Separation by ion chromatography followed by conductivity detection.
Determination of dissolved oxygen concentration by electrochemical oxygen sensors with exposed electrodes
The measurement process using a Digox Analyzer works according to the principle of the potentiostatic three-electrode measurement system developed by TÖDT and TESKE and does not require a membrane.
The measuring electrode consists of solid silver, while the counter electrode is made of stainless steel. The reference electrode is composed of silver/silver chloride.
After generating a defined “polarization voltage”, an electrochemical reaction occurs at the measuring electrode, inducing a reduction of the oxygen molecules in the sample.
Measuring electrode (silver):
O2 + 2 H2O + 4 e− → 4 OH− (cathodic process)
Counter electrode (stainless steel):
4 OH− → O2 + 2 H2O + 4 e− (anodic process)
The flow of current as a result of this reaction is directly proportional to the amount of dissolved oxygen in the sample, if the polarization voltage is fixed as close to the level of the diffusion threshold current as possible.
In this case, the relationship can be represented as follows:
I = K × CO2, whereupon K = n × F × A × 1/d
I = sensor current
CO2 = oxygen concentration
F = Faraday constant
n = number of electrons per molecule
A = cathode surface
d = thickness of the “undisturbed layer” along the wall
The thickness of the undisturbed layer along the wall is determined by the hydrodynamic relationships at the measurement electrode and the transportation of oxygen molecules across the boundary layer brought about by temperature-dependent diffusion processes. Both of these clearly defined factors are precisely measured and compensated.
In order to adjust the polarization voltage between the two electrodes, a third electrode, the reference electrode, is employed in Digox measurement devices. This reference electrode remains in contact with the surface of the measuring electrode over a diaphragm in order to prevent mass transfer [1, 2, 3].
Active calibration:
In-line calibration is integrated into the device and is initiated by pressing a button. Taking advantage of Faraday’s Law, an exactly defined amount of oxygen is produced through the electrolysis of water.
I × t = m × F
I = current required for electrolysis
t = time
m = mass, g/mol
F = Faraday constant
The oxygen dissolves in the medium as it flows through and is detected at the measuring cell. The hydrogen liberated during the electrolysis reaction is not relevant for the measurement. The microprocessor monitors the calibration values and carries out any necessary corrective measures. The electrolysis enables the calibration of the device to be carried out under the same conditions and in the same medium as the analysis. Measurement operations are not disrupted during the calibration process [3].
The following applies to Digox 6.1 and all later models: In order to precisely determine the necessary potential for the measurement system, the Digox Analyzer possesses a scanner, which records the product-specific behavior of the medium subject to analysis. This can establish, whether the medium – due to the additives or supplements – must be measured at another potential. In this way, all types of beer-based beverages, non-alcoholic beverages and wine can be analyzed. Moreover, oxygen-reducing substances which can cause the calibration to be inaccurate may also be detected using the calibration scanning process. The device automatically implements the necessary compensative measures with the factors it has determined.