Determination of the total acidity through titration
This method is used to determine the total titratable acids in beverages and concentrates.
Titratable acidity represents the sum of the free acids present in a beverage, with the exception of the dissolved carbon dioxide (carbonic acid). In fruit juices and the beverages prepared from them, they usually consist of malic acid, citric acid and tartaric acid.
The titration of the degassed beverage sample (freed from carbonic acid) is carried out potentiometrically using 0.25 mol/l sodium hydroxide solution either to a pH of 7.0 calculated as tartaric acid or to a pH of 8.1 calculated as citric acid.
The method describes how to determine the iso-α-acids, α-acids and β-acids in hop extracts and isomerized extracts by means of high-pressure liquid chromatography.
Hop extract and isomerized hop extract intended for use in beer brewing or elsewhere in the food industry
Hop extracts and isomerized hop extracts are dissolved in methanol. The iso-α-acids, α-acids and β-acids are separated using hig-pressure liquid chromatography (HPLC) with gradient elution and measured spectrophotometrically at a wavelength of 270 nm (iso-α-acids) and 314 nm (α-acids and β-acids).
This method describes how to determine iso-α-acids, α-acids and β-acids in isomerized pellets by means of reverse phase high pressure liquid chromatography (RP-HPLC).
Isomerized pellets intended for use in beer brewing or elsewhere in the food industry
The bitter substances in isomerized hop pellets contain a substantial amount of iso-α-acids; however, in addition to these, non-isomerized α-acids and β-acids are also present. In order to determine their content, a specific method is required.
After milling, the substances in question are extracted from the isomerized pellets using a diethyl ether/methanol mixture and a hydrochloric acid solution. The iso-α-acids, α-acids and β-acids dissolved in the ether phase are separated using reversed-phase high-performance liquid chromatography (RP-HPLC) and an elution gradient. They are then measured spectrophotometrically at wavelengths of 270 nm (iso-α-acids) and 314 nm (α-acids and β-acids).
Hops and hop products intended for use in beer brewing or elsewhere in the food industry
After milling, hops and hop powder products are extracted using a diethyl ether/methanol mixture and a hydrochloric acid solution. The α-acids and β-acids dissolved in the ether phase are separated using reversed phase high-pressure liquid chromatography (RP-HPLC) and measured spectrophotometrically at a wavelength of 314 nm.
Hop extracts are dissolved in methanol. The α-acids and β-acids dissolved in the methanol are separated using reversed phase high pressure liquid chromatography (RP-HPLC) and measured spectrophotometrically at a wavelength of 314 nm.
This method describes how to determine the α-acids and β-acids in hop extract using high-pressure liquid chromatography.
Hop extract intended for use in beer brewing or elsewhere in the food industry
The method describes how to determine the free amino nitrogen in the Congress wort by means of a color reaction using ninhydrin with amino acids.
Applicable for all (laboratory) worts
Low molecular weight nitrogenous substances, especially amino acids in the wort, have an influence on the course of fermentation and the formation of fermentation by-products. For a beer’s aroma profile, the concentration and composition of the amino acids are therefore of considerable significance due to their reactivity with reducing sugars (Maillard reaction), especially during kilning in the malthouse and during mashing and boiling in the brewhouse. The products from these reactions influence the redox potential, the color and the aroma of a beer.
Aside from the quantitative determination of the individual amino acids (methods using an ion exchanger, HPLC, GC), cumulative methods of determination are customary. However, these methods also measure NH4+ ions and amines to some degree.
With methods involving color reactions, the amino acids display color at different levels of intensity. Therefore, the reaction is based upon a “standard amino acid”; glycine usually serves as the standard amino acid for comparison.
With the ninhydrin method, the color yield varies with the individual amino acids between 70 and 105 %, based on glycine. Up to approx. 30 % of ammonium salts are quantified using this method and up to approx. 7 % of proline.
The ninhydrin reaction is the most well-known of the color reactions employed for use with amino acids. Ninhydrin is an oxidant and brings about the oxidative decarboxylation of amino acids, producing CO2, NH3 and the formation of an aldehyde. The aldehyde produced in this reaction possesses one less carbon atom than the original amino acid that served as the reactant. Reduced ninhydrin then reacts with non-reduced ninhydrin and the NH3 that was liberated to generate a blue pigment (all amino acids except for proline) or in the case of proline, a yellow pigment. Fructose also takes part in the color reaction as a reducing compound. Potassium iodide present in the solution used for dilution preserves the ninhydrin in an oxidized state and thus inhibits undesirable secondary reactions. The solution to be analyzed is heated together with ninhydrin at a pH of 6.7 and the resulting color is measured at 570 nm.
This method quantifies the amino acids, ammonia and also the terminal α-amino groups of the peptides and proteins. Proline is also measured in part at the wavelength employed in this method.
The method is non-specific for α-amino nitrogen, because γ-amino butyric acid found in wort also generates a color reaction in the presence of ninhydrin.