This method describes how to determine the gushing potential of a sample to be analyzed.
Malted and unmalted grain intended for use in beer brewing or elsewhere in the food industry
A cold water extract of a malt or adjunct (coarse grist) is concentrated through boiling; subsequently, standardized bottled water is added to the extract. The extract is filled in bottles. After the bottles have been shaken according to a defined procedure, they are opened and the weight of liquid fobbing out of the bottles as foam (gushing) is determined and taken as a measure of the gushing potential for the malt or adjunct in question.
beer, beer-based beverages, non-alcoholic beverages, mineral water
One of the basic prerequisites for properly conducting sensory analysis is selecting suitable candidates as members of the tasting panel.
The method describes how to determine the iron content of water photometrically with a cuvette test.
Iron(II) ions form a rust-colored complex with 1,10-phenanthroline. Iron(III) ions are reduced to iron(II) ions.
The method describes how to determine the manganese content of water photometrically with a cuvette test.
Manganese(II) ions react in an ammonia solution with formaldoxime, forming a reddish-colored complex.
Water intended for use as an ingredient in the production of beer (brewing liquor) or other foods
Ammonium ions react at a pH of approx. 12.6 with hypochlorite ions and salicylate ions in the presence of sodium nitroprusside, which serves to catalyze the reaction, to form a green color (indophenol blue).
The method describes how to determine the sulfate content of water by means of a photometric cuvette test.
In the presence of barium chloride, sulfate ions form barium sulfate, which is only slightly soluble in water. The turbidity produced by doing so is determined with a photometer.