The method is suitable for the determination of water vapor volatile aroma compounds in beer.
Volatile aroma compounds are driven out of the sample through steam distillation. The ethanolic distillate is saturated with NaCl. Potassium hydrogen sulfite is added to separate carbonyl groups that might interfere with the analysis. The extraction of the aroma compounds is performed by shaking out with dichloromethane and the phases separated by centrifuging.
The method is suitable for beer brewed to any original gravity or to any alcohol content.
Volatile compounds in beer are concentrated through distillation and extracted with dichloromethane. The solvent phase is analyzed with a gas chromatograph. The linearity of the detector and the determination of the concentrations of analytes in the sample are achieved by using multiple concentration levels within the relevant range and through evaluation of the relative area under the peaks.
Determination of organic acids by means of reversed phase chromatography/ion chromatography
This method is suitable for wine, fruit juice and other non-alcoholic beverages.
The organic acids are separated using two combined columns, reversed-phase HPLC and an ion exchange column and are then determined using a UV detector.
The method is suitable for the determination of steam-volatile aging indicators in beer.
Volatile aging indicator substances are driven out of the sample through steam distillation. The ethanol distillate is adjusted to be alkaline and saturated with NaCl. The extraction of the aroma compounds is performed by shaking out with dichloromethane and the phases separated by centrifuging. The organic phase is further concentrated in a stream of nitrogen gas. Ammonia solution is added to remove the acids, as the acids would coelute, thus preventing the quantification of important substances.
The method is suitable for beers of all original gravities and of any alcohol content.
The gas chromatography headspace method is used to determine the higher alcohols and esters present in beer, i.e., the volatile compounds are transferred from the headspace in the sample vial into the GC system for analysis. The following substances are measured in this analysis:
Acetaldehyde
Propanol-1
Ethyl acetate
2-Methylpropanol
3-Methylbutanol
2-Methylbutanol
2-Methylpropylacetate
Butyric acid ethyl ester
3-Methylbutyl acetate
2-Methylbutyl acetate
Hexanoic acid ethyl ester
Determination of the total acidity through titration
This method is used to determine the total titratable acids in beverages and concentrates.
Titratable acidity represents the sum of the free acids present in a beverage, with the exception of the dissolved carbon dioxide (carbonic acid). In fruit juices and the beverages prepared from them, they usually consist of malic acid, citric acid and tartaric acid.
The titration of the degassed beverage sample (freed from carbonic acid) is carried out potentiometrically using 0.25 mol/l sodium hydroxide solution either to a pH of 7.0 calculated as tartaric acid or to a pH of 8.1 calculated as citric acid.