Acidulated malt intended for use in beer brewing or elsewhere in the food industry
L-lactic acid (L-lactate) is oxidized by nicotinamide adenine dinucleotide (NAD) in the presence of L-lactate dehydrogenase (L-LDH) to pyruvic acid. For oxidation of D-lactic acid, the enzyme D-lactate dehydrogenase (D-LDH) is required.
L-lactate + NAD+ |
L-LDH |
pyruvate + NADH + H+ |
D-lactate + NAD+ |
D-LDH |
pyruvate + NADH + H+ |
The equilibrium of these reactions is much closer to lactate. The equilibrium can be shifted towards the pyruvate and NADH side of the equation by removing the pyruvate with the help of the following reaction involving the enzyme glutamate-pyruvate transaminase (GPT) in the presence of L-glutamate.
pyruvate + L-glutamate |
GPT |
L-alanine + α-ketoglutarate |
The amount of NADH formed during the reactions is equivalent to the amount of lactic acid or D-lactic acid; the absorbance is determined photometrically at 334, 340 or 365 nm.
Determination of the amount of cold break material in the pitching wort
Cast-out wort, wort from the midpoint of chilling/pitching wort (without yeast)
The hot break material (trub) and any hop particles which may be present in the wort, must first be removed. After the wort has been cooled to 2 °C, it is filtered through a glass fiber filter. The residue remaining on the filter is dried and then weighed.
Cold break material or cold trub refers to all material that settles out in the process of chilling wort after separation of the hot trub or hot break material. Cold trub can be filtered out of the wort and primarily consists of proteins (48–57 %), tannins (11–26 %) and carbohydrates (20–36 %). The amount of cold break material in wort depends on the quality and composition of the raw materials, brewhouse equipment and wort handling. In academic and professional circles, opinions regarding the significance of cold break material for downstream processes and for the quality of the finished beer are strongly divided [1, 2, 5]. Under certain circumstances, the quantity of cold break material in wort may exceed 250 mg/l, especially where accelerated fermentation is practiced. Ultimately, this can detract from the flavor of the finished beer [3]. Breweries, where removal of the cold break material has been practiced successfully, determine the quantity of cold break in their pitching wort at regular intervals, in order to evaluate the efficacy of their separation equipment.
This method describes how to determine the organic acids in wort and the Congress wort using a cation exchanger.
Applicable for all (laboratory) worts
A cation exchanger based upon a sulfonated, crosslinked styrene/divinylbenzene copolymer is used to determine various organic acids in wort. Due to the high ligand density, the separation mechanism is based upon a combination of ion exclusion, ligand exclusion and steric exclusion; detection is performed using a UV detector.
This method describes how to perform the iodine test and measure the saccharification time in the Congress mash method.
Malt intended for use in beer brewing or elsewhere in the food industry
The iodine test is performed to determine the time required for saccharification during mashing. It is to be evaluated based on the type of malt used for mashing.
Suitable for all (laboratory) worts
Wort is produced using a laboratory mash method (fine grind) after which the nitrogen content of the wort is determined.
Suitable for Congress mash
The amount of soluble nitrogenous substances in Congress wort is determined using spectrophotometry at wavelengths of 215 and 225 nm.