The method is suitable for the determination of water vapor volatile aroma compounds in beer.
Volatile aroma compounds are driven out of the sample through steam distillation. The ethanolic distillate is saturated with NaCl. Potassium hydrogen sulfite is added to separate carbonyl groups that might interfere with the analysis. The extraction of the aroma compounds is performed by shaking out with dichloromethane and the phases separated by centrifuging.
The method is suitable for beers of all original gravities and of any alcohol content.
The gas chromatography headspace method is used to determine the higher alcohols and esters present in beer, i.e., the volatile compounds are transferred from the headspace in the sample vial into the GC system for analysis. The following substances are measured in this analysis:
Acetaldehyde
Propanol-1
Ethyl acetate
2-Methylpropanol
3-Methylbutanol
2-Methylbutanol
2-Methylpropylacetate
Butyric acid ethyl ester
3-Methylbutyl acetate
2-Methylbutyl acetate
Hexanoic acid ethyl ester
Determination of dissolved oxygen concentration using electrochemical oxygen sensors with an optochemical sensor
The basis for these O2 measurements is the detection of photoluminescence produced by an oxygen-sensitive layer. The change in photoluminescence depends on the partial pressure of the oxygen. Given the values for the partial pressure of the oxygen and the temperature, the amount of oxygen gas dissolved in the liquid can be calculated. The oxygen sensor determines the O2 content of the liquid by means of optical detection through a photoluminescent process, in which an oxygen-sensitive layer is exposed to blue light. In doing so, the molecules in this layer become excited and reach a higher energy state. In the absence of oxygen, the molecules emit a red-colored light. If oxygen is present, it collides with the molecules in the oxygen-sensitive layer. The molecules in the oxygen-sensitive layer, which have collided with oxygen, cease to emit light (refer to figure 1). For this reason, a relationship exists between the oxygen concentration and the intensity of the emitted light as well as the intensity and the rapidity with which the intensity of the light diminishes. The intensity of the light is reduced at higher oxygen concentrations, although the rate at which it does so increases. The temperature of the product and the time interval between the light signal and the emission of light (phase shift) are both measured and used to calculate the oxygen content.
The device’s construction enables the state of the blue LED to be monitored using a photodiode. Another photodiode – with a red filter – measures the oxygen-dependent red light (refer to figure 2). This light is emitted by the luminophores due to photoluminescence (fluorescence) after they reach an excited state through exposure to the blue light. As a result of this exposure, the electrons of the luminophores are elevated to a higher energy level. As they return to their original energy level, they emit a red light.
Determination of xanthohumol and isoxanthohumol
All beers, beer-based beverages, wort, ethanol extracts, CO2 spent hops and xanthohumol products
Xanthohumol and isoxanthohumol are dissolved with acetonitrile from the sample and following separation, are determined using a Nucleodur C18 column and UV detection.
This method is suitable for the determination of steam-volatile aroma compounds in wort.
Volatile aroma compounds are driven out of the sample through steam distillation. The ethanol distillate is adjusted to be alkaline and saturated with NaCl. The extraction of the aroma compounds is performed by shaking out with dichloromethane and the phases separated by centrifuging. The organic phase is further concentrated in a stream of nitrogen gas. An ammonia solution is added to remove the acids, because the acids would co-elute, thus preventing quantification of the target substances.
Determination of the concentration of dissolved carbon dioxide in carbonated beverages in bottles and cans
The total gas pressure in beer is measured after the beer has been forcefully shaken. The carbon dioxide is then bound through the addition of potassium hydroxide. The amount of air in the beer contributes the remaining volume of gas. Once the value for the total pressure has been corrected by subtracting the quantity of air present in the beer, the carbon dioxide can be measured [1].