The method is suitable for the determination of water vapor volatile aroma compounds in beer.
Volatile aroma compounds are driven out of the sample through steam distillation. The ethanolic distillate is saturated with NaCl. Potassium hydrogen sulfite is added to separate carbonyl groups that might interfere with the analysis. The extraction of the aroma compounds is performed by shaking out with dichloromethane and the phases separated by centrifuging.
Boiler water for use in the production of beer and other foods
Analogous to the p and m values obtained in the determination of acid capacity (pH 8.2 and 4.3), this analysis is performed according to W-000.13.031 Acid Consumption (Alkalinity, p-Value and m-Value)/Acid Capacity to pH of 8.2 and/or 4.3 for Water. The alkaline capacity of the boiler water is determined through titration of the sample with 0.1 N sodium hydroxide (instead of hydrochloric acid) to a pH of 4.3 and/or 8.2.
Determination of the amount of cold break material in the pitching wort
Cast-out wort, wort from the midpoint of chilling/pitching wort (without yeast)
The hot break material (trub) and any hop particles which may be present in the wort, must first be removed. After the wort has been cooled to 2 °C, it is filtered through a glass fiber filter. The residue remaining on the filter is dried and then weighed.
Cold break material or cold trub refers to all material that settles out in the process of chilling wort after separation of the hot trub or hot break material. Cold trub can be filtered out of the wort and primarily consists of proteins (48–57 %), tannins (11–26 %) and carbohydrates (20–36 %). The amount of cold break material in wort depends on the quality and composition of the raw materials, brewhouse equipment and wort handling. In academic and professional circles, opinions regarding the significance of cold break material for downstream processes and for the quality of the finished beer are strongly divided [1, 2, 5]. Under certain circumstances, the quantity of cold break material in wort may exceed 250 mg/l, especially where accelerated fermentation is practiced. Ultimately, this can detract from the flavor of the finished beer [3]. Breweries, where removal of the cold break material has been practiced successfully, determine the quantity of cold break in their pitching wort at regular intervals, in order to evaluate the efficacy of their separation equipment.
Determination of the fermentation cellar yield in order to monitor brewhouse operations
Wort from the midpoint of chilling/pitching wort
The fermentation cellar yield is calculated using the value determined for the amount of extract contained in a batch of wort relative to the amount of extract present in the raw materials used to produce the wort.
The sample describes how to collect samples of adjuncts.
The moisture content of adjuncts is determined through the loss in mass during a standardized drying process, in which ground malt is dried at a defined temperature within a specified time in an electrically heated drying oven.
The moisture content is determined through the difference in the weight of the adjuncts prior to and after drying.
For samples with a moisture content greater than 17 % (for corn over 15 %), the sample has to be dried prior to conducting the analysis.