If a water sample is run through a strongly acidic cation exchanger, all of the cations are replaced with hydrogen ions, thus producing the corresponding free acids in equivalent quantities (total mineral acid value). Since the carbonates and bicarbonates are transformed into carbon dioxide and therefore escape determination, their content must be determined through titration with acid to a pH of 4.3 (m value).
This method describes how to calculate the concentration of sodium and potassium ions in water.
Since analyses for determining the concentrations of sodium and potassium ions in water require considerable effort, and these ions are not very relevant for evaluating the suitability of water for the processes of brewing and malting, a simple calculation will suffice. The difference in the concentrations of anions and cations in the water is determined, allowing the calculation to be performed under the assumption that only sodium ions are present in the water.
Determination of the proportional composition of grist fractions through sieve analysis
Malt grist, grist from adjuncts
The extract yield in the brewhouse is highly dependent on optimal milling of the malt or other grain. The composition of the brewery grist should therefore be monitored on a regular basis.
The sieve analysis is performed on a sample of brewery grist of a known weight with a shaking device containing a set of sieves (according to DIN ISO 3310-1 specifications or a Pfungstädter plansifter sieving device).
Volumetric determination of the husk fraction
Grist from malt or adjuncts
The sieve analysis is performed on a sample of brewery grist of a known weight with a shaking device containing a set of sieves (according to DIN ISO 3310-1 specifications or a Pfungstädter plansifter sieving device). The material retained on sieve 1 is then poured into a 500 ml graduated cylinder and the volume (without shaking) is read on the graduated cylinder.
Determination of the amount of cold break material in the pitching wort
Cast-out wort, wort from the midpoint of chilling/pitching wort (without yeast)
The hot break material (trub) and any hop particles which may be present in the wort, must first be removed. After the wort has been cooled to 2 °C, it is filtered through a glass fiber filter. The residue remaining on the filter is dried and then weighed.
Cold break material or cold trub refers to all material that settles out in the process of chilling wort after separation of the hot trub or hot break material. Cold trub can be filtered out of the wort and primarily consists of proteins (48–57 %), tannins (11–26 %) and carbohydrates (20–36 %). The amount of cold break material in wort depends on the quality and composition of the raw materials, brewhouse equipment and wort handling. In academic and professional circles, opinions regarding the significance of cold break material for downstream processes and for the quality of the finished beer are strongly divided [1, 2, 5]. Under certain circumstances, the quantity of cold break material in wort may exceed 250 mg/l, especially where accelerated fermentation is practiced. Ultimately, this can detract from the flavor of the finished beer [3]. Breweries, where removal of the cold break material has been practiced successfully, determine the quantity of cold break in their pitching wort at regular intervals, in order to evaluate the efficacy of their separation equipment.
Suitable for analysis of all (laboratory) wort samples
Zinc in wort is measured using the AAS technique by directly aspirating the diluted sample into an acetylene oxygen flame or through electrothermal atomization; the measurement is made at 213.9 nm.